Search results for "Submitochondrial Particles"
showing 6 items of 6 documents
3-acetylaltholactone and related styryl-lactones, mitochondrial respiratory chain inhibitors.
2000
A novel furano-pyrone, 3-acetylaltholactone, and two other known styryl-lactones, altholactone and 5-acetoxyisogoniothalamin oxide, have been isolated from Goniothalamus arvensis (Annonaceae) stem bark. We report here the isolation and structural elucidation of these compounds with furane-pyrone and styryl-pyrone skeletons, postulating also for the first time their mechanism of cytotoxicity based on inhibition on mammalian mitochondrial respiratory chain.
Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins
1999
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the largest and most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding the electron pathways from matrix NADH to membrane ubiquinone and the links of this process with the translocation of protons are highly controversial. Different types of inhibitors become valuable tools to dissect the electron and proton pathways of this complex enzyme. Therefore, further knowledge of the mode of action of complex I inhibitors is needed to understand the underlying mechanism of energy conservation. This study presents for the first time a detailed …
Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I).
1994
Natural products from the plants of the family Annonaceae, collectively called Annonaceous acetogenins, are very potent inhibitors of the NADH-ubiquinone reductase (Complex I) activity of mammalian mitochondria. The properties of five of such acetogenins are compared with those of rotenone and piericidin, classical potent inhibitors of Complex I. Rolliniastatin-1 and rolliniastatin-2 are more powerful than piericidin in terms of both their inhibitory constant and the protein-dependence of their titre in bovine submitochondrial particles. These acetogenins could be considered therefore the most potent inhibitors of mammalian Complex I. Squamocin and otivarin also have an inhibitory constant …
Gamma-lactone-Functionalized antitumoral acetogenins are the most potent inhibitors of mitochondrial complex I.
2001
To study the relevance of the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety of the antitumoral acetogenins of Annonaceae for potent mitochondrial complex I inhibition, we have prepared a series of semisynthetic acetogenins with modifications only in this part of the molecule, from the natural rolliniastatin-1 (1) and cherimolin-1 (2). Some of the hydroxylated derivatives (1b, 1d and 1e) in addition to two infrequent natural beta-hydroxy gamma-methyl gamma-lactone acetogenins, laherradurin (3) and itrabin (4), are more potent complex I inhibitors than any other known compounds.
New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
2000
Determination of the number of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a controversial question with a direct implication for elaborating a suitable model to explain the bioenergetic mechanism of this complicated enzyme. We have used combinations of both selective inhibitors and common ubiquinone-like substrates to demonstrate the multiplicity of the reaction centers in the complex I in contrast with competition studies that have suggested the existence of a unique binding site for ubiquinone. Our results provide new evidence for the existence of at least two freely exchangeable ubiquinone-binding sites with different specif…
Intramitochondrial crystalloids in rat pinealocytes.
1982
In the present study the rare occurrence of intramitochondrial crystalloid inclusions in the rat pinealocytes is described. They lie within the mitochondrial matrix and consist of a lattice of moderately electron-dense lines. Intersections at regular intervals form rhomboid-like subunits. The significance of these inclusions is not known.